54 research outputs found

    Earthquake Prediction

    Get PDF
    Among the countless natural disasters, earthquakes are capable to inflict vast devastation to a large number of buildings and constructions at the blink of an eye. Lack of knowledge and awareness on earthquake as well as its comeback is conspicuous and results in disaster; leading to bitter memories. Therefore, earthquake forecast has been a polemical study theme that has defied even the most intelligent of minds. In this chapter, an attempt was made to do an extensive overview in the area of the earthquake prediction as well as classifying them into the main strategies comprising short‐, immediate‐, and long‐term prediction. An example of each strategy was carried out by mentioning their corresponding approaches/algorithms, such as ΔCFS, CN, MSc, M8, ANN, FFBPANN, KNN, GRNN, RBF, and LMBP; depending on the importance of each strategy. Based on these, it was concluded that, after the Tohoku‐Oki earthquake with M9.0, the current orientation of the Headquarters for earthquake Research Promotion of MEXT in Japan declare that, their mission would be long‐term statistical forecast of seismicity. Even, it is claimed that they do not emphasize on short‐term forecasting. Besides, intermediate‐term estimations are not capable to be used for prevention of all damages and protect all human life, but they may be utilized to undertake certain affordable activities to decrease damage, losses, and modify postdisaster relief. And, despite the long‐term prediction is more concerned by researchers, there is no certain satisfactory level to content them. De facto, the made covenant of 1970 that investigators will be capable to forecast/predict ground excitations within a decade, still remains unmet

    Invited Review: Recent developments in vibration control of building and bridge structures

    Get PDF
    This paper presents a state-of-the-art review of recent articles published on active, passive, semi-active and hybrid vibration control systems for structures under dynamic loadings primarily since 2013. Active control systems include active mass dampers, active tuned mass dampers, distributed mass dampers, and active tendon control. Passive systems include tuned mass dampers (TMD), particle TMD, tuned liquid particle damper, tuned liquid column damper (TLCD), eddy-current TMD, tuned mass generator, tuned-inerter dampers, magnetic negative stiffness device, resetting passive stiffness damper, re-entering shape memory alloy damper, viscous wall dampers, viscoelastic dampers, and friction dampers. Semi-active systems include tuned liquid damper with floating roof, resettable variable stiffness TMD, variable friction dampers, semi-active TMD, magnetorheological dampers, leverage-type stiffness controllable mass damper, semi-active friction tendon. Hybrid systems include shape memory alloys-liquid column damper, shape memory alloy-based damper, and TMD-high damping rubber

    Utilizing Ultra-High Performance Concrete Overlay for Road Pavement Repair and Strengthening Applications

    Get PDF
    This study aims to develop a new thixotropic ultra-high-performance concrete (UHPC) overlay for the repair and strengthening of damaged hot mix asphalt (HMA) pavements. The overlay is purposely designed to accommodate the roadway slope of up to 10% due to presence of viscosifying agent materials. The original UHPC materials are comprised of granite aggregate, ultra-fine calcium carbonate, shrinkage-reducing admixture, viscosifying agent, and expansive agent. The study is conducted with three sets of samples provided and considers thixotropic and mitigated shrinkage properties through comparing control (non-thixotropic) overlay 1 (thixotropic), and overlay 2 (thixotropic) mixtures. Based on the obtained results, only overlay 1 corresponds to the minimum requirement for pavement rehabilitation, with 160-200 mm flowability and -545.3 µm/m free shrinkage. As a result, an average 50 mm thick overlay 1 is selected to repair a damaged HMA pavement (1800 m2), while the field implementation procedures and drawing details are also presented in this paper

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms

    Seismic Response Characteristics of RCC Dams Considering Fluid-Structure Interaction of Dam-Reservoir System

    Get PDF
    In analysis of different types of dams, i.e. arch, gravity, rockfill and Roller Compacted Concrete (RCC) dams, the effect of hydrodynamic water pressure as an effective factor must seriously be taken into consideration. In present study, the hydrodynamic effect is precisely deliberated in RCC dams and compared to hydrostatic pressure effect. For this purpose, Kinta RCC dam in Malaysia is selected and 2D finite element (FE) model of the dam is performed. The Lagrangian approach is used to solve the dam-reservoir interaction, fluid–structure interaction (FSI), and in order to evaluate the crack pattern, Concrete Damaged Plasticity (CDP) model is implemented. Comparisons show that hydrodynamic pressure significantly changes the dam behaviour under seismic excitations. Moreover, the hydrodynamic effect modifies the deformation shape of the dam during the ground motions, however, it increases the magnitudes of the developed stresses causing more extensive tension crack damages mostly in the heel and upstream zones of the dam

    Introduction to Monitoring of Bridge Infrastructure Using Soft Computing Techniques

    Get PDF
    More than a billion structures exist on our planet comprising a million bridges. A number of these infrastructures are near to or have already exceeded their design life and maintaining their health condition is an engineering optimization problem. Besides, these assets are damage-prone during their service life. This is due to the fact that different external loads induced by the environmental effects, overloading, blast loads, wind excitations, floods, earthquakes, and other natural disasters can disturb the serviceability and integrity of these structures. To overcome such bottlenecks, structural health monitoring (SHM) systems have been used to guarantee the safe functioning of structures to make satisfactory decisions on structural maintenance, repair, and rehabilitation. However, conventional SHM approaches such as virtual inspections cannot be used for structural continuous monitoring, real-time and online assessment. Therefore, soft computing techniques can be significantly used to mitigate the aforesaid concerns by handling the qualitative analysis of the complex real world behavior. This chapter aims to introduce the optimized SHM-based soft computing techniques of bridge structures through artificial intelligence and machine learning algorithms in order to illustrate the performance of advanced bridge monitoring approaches, which are required to maintain the health condition of infrastructures as well as to protect human lives

    Seismic analysis of roller compacted concrete (RCC) dams considering effect of sizes and shapes of galleries

    No full text
    This paper compares the analysis of a Roller Compacted Concrete (RCC) dam with and without galleries under seismic loading. The effects of different sizes and shapes (circle, octagon and square) of gallery have also seen in the analysis. For this purpose, twodimensional (2D) Finite Element Model (FEM) is used for nonlinear dynamic analysis by means of finite element software, ABAQUS. In addition, Concrete Damaged Plasticity (CDP) model is also implemented to inspect the tensile damage of the dam during earthquake excitation. Kinta RCC dam of Malaysia is considered as a case study in analysis. From the seismic analysis, it was found that by increasing the size of openings, stress is developed around the galleries. As a result, the gallery with circle shape is more appropriate for the dam in comparison to gallery with square and octagon shapes. From crack propagation analysis and displacement response, it was also found that the gallery with circle shape behaves better than the gallery with square and octagon shaped

    Flexible foundation effect on seismic analysis of Roller Compacted Concrete (RCC) dams using finite element method

    No full text
    Recently, Roller Compacted Concrete (RCC) dams have become one of the most applicable types of dams across the globe. However, the basic challenge in analysis of RCC dams is evaluation of the actual response under earthquake excitations with considering flexible foundation and impounded water. For this purpose, a finite element model of RCC Dam-Reservoir-Foundation is accurately developed and dynamic time history analysis is utilized to assess the seismic responses in terms of acceleration, displacements, stresses, cracking patterns and crack propagation by implementation of concrete damaged plasticity model. A verification model is carried out to show the work accuracy. Based on these explanations, the obtained results showed that, however, the hydrodynamic pressure due to the reservoir water had great influence on seismic responses of the RCC dam with rigid foundation especially in terms of displacement response but overall responses of the dam are greatly fluctuated while flexible foundation is taken into consideration
    corecore